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ad-hoc networks standards does not adapt to these conditions. The rest of subsections discuss 

about each layer and solution that will be implemented in standards 

1.1.1 IEEE 802.11 Wireless Communication 

 The IEEE 802.11 standard defines Medium Access Control (MAC) and physical layer 

(PHY) of the open systems interconnection (OSI) model to ensure compatibility across all 
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1.1.2 Medium Access Control 

For a shared wireless medium, transmission nodes are required to contend for the 

channel. Signal collision happens when two nodes transmit using the same channel, resulting in 

interference and hence packet lost. To overcome such inefficiency, ad-hoc nodes uses distributed 

coordinated function (DCF) to contend for signal transmission. This function optimizes for fair 

usage of wireless medium even in a high utilization rate. [3] One common problem in this 

mechanism is the hidden node problem. 

A BC

 

Figure 1: Hidden Node Problem 

The hidden node can be illustrated using Figure 1. In this situation, Node A and Node B 

does not interfere. When node B transmit to node C, node A will not sense the medium being 

busy, and cause interference, resulting a failed packet transmission in Node C.  
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Figure 2 RTS-CTS illustration 

To overcome such problem, IEEE 802.11 uses RTS-CTS mechanism. Before a packet is 

transmitted, ready-to-send (RTS) packet control packet is transmitted to receiver. Receiver will 

acknowledge RTS request by replying continue-to-send (CTS) packet. The hidden node-A which 

receives CTS will enter silent period to avoid channel conflict. 

Signal collision between nodes in the same channel can be simulated accurately. By simulating 

signal collision behavior, network engineer can place nodes strategically to optimize a network.  
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1.2 IEEE 802.11p 

 The IEEE 802.11p is an extension of existing IEEE 802.11 standard. The Wireless 

Access for Vehicular Environment (WAVE) and DSRC (Dedicated Short Range 

Communications) is established in European Countries and United States as a standard for 

vehicular network. This Federal Communications Commission standard allocated 75MHz 

spectrum at 5.9GHz bandwidth for vehicular communication [4]. 

Table 1-FCC Allocation of VANET networks 

Frequency 

(Ghz) 

5.850 5.860 5.870 5.880 5.890 5.900 5.910 5.920 

Channel 

Number 

 172 174 176



7 

 

contention window such that transmit opportunity of one channel does not affect the other 

channels [5]. 

The Physical layer of 802.11p uses Orthogonal Frequency Division Multiplexing 

(OFDM) to make use different channels. IEEE 802.11p states optional enhanced receiver 

performance requirements; this allows each channel to be encoded in different rate, resulting in 

different Bit Error Rate (BER). By introducing sub-carrier encoding, each channel is customized 

to trade-off between transmit range and bandwidth.  

1.3 Mobility Modelling 

 This section discusses simulated behavior beyond the context of networking. These 

behaviors are necessary model vehicular movement and road traffic scenarios.  

1.3.1 Vehicular Area Network 

The main task of Vehicular ad-hoc networking is distributing data to other nodes. The 

distribution is split into three categories. Vehicle to Vehicle transfer (V2V) is concerned in 

transferring data from vehicle nodes to vehicle nodes. Vehicle to Infrastructure (V2I) focuses on 

transferring data between vehicular nodes and infrastructure such as internet backhaul or access 

points. Vehicle to Other Units (V2X) looks at interaction between Vehicular Nodes and other 

nodes that is not infrastructure or vehicular, such as the road side units. 

The data distribution behavior can be modelled by epidemiological model and isolated 

epidemiological model propose
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simulator. By using real-world maps, the simulated positions and routes are closely related to 

real-world scenarios. 

1.3.2 Driving Behavior 

The mobility models in NS-3 consist of position and routes. The traffic routes are derived 

using real-world scenarios. Each vehicle in map holds the value of position, velocity, and is 

considered as a network node.  NS-3 simulator uses Treiber’s Intelligent Driving Model (IDM) 

to calculate the change in velocity and position [8]. The driving behavior also incorporates lane 

changing behavior; the model named “Minimizing Overall Braking decelerations Induced by 

Lane changes (MOBIL)” is introduced for realistic lane changing behavior [9]. These models 

have been verified against realistic data derived from experiments [10]. 

 

 

(1.3) 

where 

 
(1.4) 

 

The IDM model in equation 1.3 and 1.4 defines change in velocity as a function of 

acceleration and current velocity. On a free-road, change in velocity dv, depends on acceleration 

and deceleration a, comfortable braking value b, current velocity v, desired velocity v0 and 

desired distance of the vehicle in front s* and actual distance of the vehicle in front s.  

 

 (1.5) 
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Vehicles travelling at high speed have very little response time to respond to accidents 

ahead. Furthermore, drivers do not usually see beyond vehicle in front. The safety application 

can communicate over a distance, preventing the pile-up accidents from happening. The early 

warnings give drivers more response time, or even automate the vehicle to stop. 

Driving through uncontrolled intersections poses as a challenge for drivers, given limited 

viewing range, and the need for drivers to look into many directions (e.g., intersections without a 

traffic light). In VANET, safety application detects and warns drivers of an oncoming vehicle to 

prevent accident, and vehicles can coordinate in an intersection to prevent collision.  

Road congestion can be reduced using VANET. This is done by properly planning the 

route to destination. Since vehicles are connected, congested road is avoided. It also indirectly 

reduces traffic accidents [11] because drivers would be less frustrated and more inclined to 

follow traffic regulations. 

User applications in VANET use the Service Channel (SCH) and provide drivers and 

passengers with network capabilities. This may include internet service on the road, or other 

network services like commercial advertisements or location directory. VANET appears to be 

invisible layer, and thus existing applications can be applied to VANET. 

The NS-3 simulator is built on top of these rules and behaviors. They are sufficient to 

simulate real-world conditions and generate data outputs by applying basic networking theories, 

and applying VANET standard above it. We then model the driving behavior and realistic maps 

to generate realistic data.  
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1.5 Thesis Organization 

In chapter 2, this chapter discusses current state of the simulation technology, and the proposed 

solution of this thesis. 

Chapter 3 explains about the current simulators that exist and the study of some applications that 

are commonly used. 
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CHAPTER 2 

PROBLEM DESCRIPTION AND CONTRIBUTIONS 

The current VANET Simulator uses NS-3 to simulate networking and driving models.  

Simulation is the first step of designing networks; network designers optimize Quality of Service 

by tweaking parameters. Cristea et al [12] states the usefulness of large scale VANET simulators. 

Contemporary large scale VANET simulation is proved to be time consuming and often energy 

consuming.  

Some solution such as Mobile wireless Vehicular Environment Simulator (MoVES) uses 

distributed computing to simulate large scale networks [13]. These simulators achieve higher 

computation throughput by distributing workload across computers, but power and hardware 

costs for such solutions are expensive [14]. There is also solution proposed by Moritz et al that 

use mathematical model to optimize simulation by reducing computation workload thus trading 

off output accuracy [15]. The computation resources play an important role in computation 

performance. 

The solution of this thesis concentrates on how to design energy efficient high performance 

vehicular area network simulator for large scale networks. In this thesis work we have proposed 

using General Purpose Graphics Processing Unit (GPGPU) to assist VANET simulation to 

improve computation performance. This solution is known for large scale and efficient 

simulation. Many simulators adapted to such solution yield promising speed up[16]. In this thesis 

work, a Compute Unified Device Architecture (CUDA) is used to offload expensive 

computations from NS-3 simulator to improve simulation throughput.  
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CHAPTER 3 

LITERATURE SURVEY 

 

 

This chapter provides a detailed overview of the two main aspects of this dissertation, the 

NS-3 network simulator and VANET extension of NS-3. Hadi Arbabi and Michele C. Weigle 

[17] extended NS-3 to simulate VANET based on models described in Chapter 1.  

3.1
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 The iTETRIS platform is a project funded by European Commission, and mainly used by 

and developed by European nations. This platform serves as a connector for NS-3 simulator and 

Simulation of Urban Mobility (SUMO) simulator to simulate Intelligent Transportation System 

(ITS). The platform is being commercially used but developed as open source software. It is 

distributed by invitation or request only. It features three realms simulation, including traffic 

management, network communications, and ITS facilities support. 

 The NS-3 simulator is open source software and fully developed by academia for 

academia purposes. Software can be modified for specific uses, and due to the large user base, it 

has large community support. NS-3 does not require a GUI to use, but extensions of GUI are 

being developed to review simulation results. NS-3 is not compatible with NS-2, it has been 

written from scratch based on python and C++ programming language. In a recent study [23], the 

NS-3 simulator yields better performance than OMNET++ simulator. NCTuns is commercial 

licensed, and researchers no longer have access to the source code. NS-3 is the suitable target 

because it uses the similar programming language as CUDA. It is also open source; users are free 

to modify the source code to their needs. NS-3 also inherits the best simulation speed. 

3.1 The NS-3 Simulator 

NS-3 simulator is a discrete event simulator. Model behavior is simulated by generating 

events which represent an event happened in reality. For example, when a node sends a packet, 

Application layer will first generate an event, which will be processed by the Network Layer. 

Network layer will then generate events to the MAC Layer, and the events cascade until the 

packet reaches its destination. 
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    1   #include "ns3/core-module.h" 
    2 #include "ns3/network-module.h" 

    3 #include "ns3/internet-module.h" 

    4 #include "ns3/point-to-point-module.h" 

    5 #include "ns3/applications-module.h" 

    6  

    7 using namespace ns3; 

    8  

    9 NS_LOG_COMPONENT_DEFINE ("FirstScriptExample"); 

   10  

   11 int 

   12 main (int argc, char *argv[]) 

   13 { 

   14 

http://www.nsnam.org/doxygen/group__logging.html#ga225a95395fa117b7309aa3c43518d02e
http://www.nsnam.org/doxygen/first_8cc.html#a0ddf1224851353fc92bfbff6f499fa97
http://www.nsnam.org/doxygen/first_8cc.html#a0ddf1224851353fc92bfbff6f499fa97
http://www.nsnam.org/doxygen/classns3_1_1_time.html#ac89165ba7715b66017a49c718f4aef09
http://www.nsnam.org/doxygen/classns3_1_1_time.html#a87a7f4d29c68b047a72d291ad660295aae324232af1b8cf625cecd92a22e0f2dc
http://www.nsnam.org/doxygen/group__logging.html#gadc4ef4f00bb2f5f4edae67fc3bc27f20
http://www.nsnam.org/doxygen/group__logging.html#ggaa6464a4d69551a9cc968e17a65f39bdbae36aedc880de94fd5a5b53bb9fe65628
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 Events are logged in the output of the simulation. Logs are important for precise output. 

To find out exact propagation delay in example in figure 4, we need a more detailed output. 

More packets can be logged by changing line 15 and 16 replacing LOG_LEVEL_INFO to 

LOG_LEVEL_ALL. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 

11 
12 

 
13 
14 

 
15 
16 
17 
18 
19 
20 

0s UdpEchoServerApplication:UdpEchoServer(0x165023c0) 
0s UdpEchoClientApplication:UdpEchoClient(0x16502890) 
0s UdpEchoClientApplication:SetDataSize(0x16502890, 1024) 
1s UdpEchoServerApplication:StartApplication(0x165023c0) 
2s UdpEchoClientApplication:StartApplication(0x16502890) 
2s UdpEchoClientApplication:ScheduleTransmit(0x16502890, +0.0ns) 
2s UdpEchoClientApplication:Send(0x16502890) 
2s UdpEchoClientApplication:Send(): At time 2s client sent 1024 bytes to 10.1.1.2 port 9 
2.00369s UdpEchoServerApplication:HandleRead(0x165023c0, 0x165029d0) 
2.00369s UdpEchoServerApplication:HandleRead(): At time 2.00369s server received 1024 bytes 
from 10.1.1.1 port 49153 
2.00369s UdpEchoServerApplication:HandleRead(): Echoing packet 
2.00369s UdpEchoServerApplication:HandleRead(): At time 2.00369s server sent 1024 bytes to 
10.1.1.1 port 49153 
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Figure 6 NS-3 architecture 

Modules in NS
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 The modules work together by calling back module functions by the core scheduler. 

Callback works by first storing function pointer to scheduler. Figure 7 presents an example use 

of callback mechanism commonly used by NS-3 simulator; this is the actual source code 

excerpt of node.cc. In line 155 and 156, simulator scheduled an event to be called, and the 
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In figure 8, the simulator uses a linked list to store vehicles and uses maps to store highway 

paths. Highway paths are defined in XML file, for each simulation step, vehicles positions are re-

evaluated based on the driving models. 

 
Figure 9 Visualized vehicular trace file 

3.4 Large Scale NS-3 Simulation 

Large scale network simulations are fundamental part of active networking research. NS-

3 supports distributed simulation. This effectively parallelizes process across a network using 

multiple computers. Pelkey and Riley [26] recent study yield 2.4 times speed up using distributed 

simulation. The author experimented with node size up to 5000 nodes. The authors also pointed 

out that synchronization is the big factor to consider when running a simulation for speed up. 

CUDA architecture accelerates processes by applyifo8dning a simulation fo4gr(il)-
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first use of CUDA in NS-3 simulator to simulate large scale nodes. The author translated Floyd-

Warshall algorithm to Graph-Matrix format to effectively use GPGPU resources. The author also 

claims the speed up of 3.5 over simulation of 5000 nodes connected in BRITE topology. The 

simulation showed promising results, using significantly less resources and yield higher speed up 

than MPI implementation. 

These two outcomes suggest that large number of nodes needs to be parallelized in order 

to create a scalable simulation. Swenson et al stated the impact of parallelization; in one 

experiment, a single run took 30 minutes to run. VANET simulation can yield the same speed up 

using this approach. MPI and CUDA implementation can be combined to yield even better speed 

up, and would take a lot of effort to develop such solution. 

This chapter concludes that NS-3 is the proper platform for this thesis work. The NS-3 

simulator yields better performance and is natively supported by CUDA. NS-3 simulator is 

simple to use, and its architecture allows developers to easily extend the NS-3 simulator 

functionality. Furthermore, the NS-3 VANET simulation model is developed and verified against 

other simulators. Finally, large scale network simulation is commonly used and scalable 

solutions are being researched. 
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CHAPTER 4 

PROPOSED SOLUTION 

 

The main objective of the proposed solution is to improve speed up using CUDA 

architecture. Previous chapter, we discussed some knowledge of NS-3 VANET implementation 

allowing us to arrive at this solution. We also briefly discussed about parallelization and methods 

of implementation. This chapter propose a solution by focusing on parallelization using CUDA 

and how to integrating the solution into NS-3. 

4.1 CUDA 

CUDA is a general purpose parallel computing platform and programming language to 

optimally use NVIDIA Graphics Processing Unit (GPU)[28]. CUDA is perceived as a co-

processor to offload programmer’s workload into GPU hardware. GPU has the advantage of 

handling many threads in parallel using the same instruction. A CUDA program which runs on 

GPU hardware is called a kernel. When kernel is called, CPU can either wait for GPU to 

complete its computation, or it may continue processing other tasks until kernel execution is 

complete. 
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Figure 10 CUDA Logical Organization 

CUDA code execution hierarchy is based on Grid, Block, and Threads. Figure 10 is used 

to visualize the grid, block and thread organization of CUDA architecture. Grid is a group of 

Blocks; and Blocks are a group of Threads. Each block is guaranteed to execute in parallel in 

CUDA. Each thread in the same block shares the same Shared Memory and executes the same 

instruction. The Shared memory is the fastest memory built in GPU Streaming Multiprocessors. 

Due to the fact that each block of threads are guaranteed to execute in parallel, number of threads 

in a block is limited to 32 in each dimension, or 1024 maximum number of threads per 

block[29]. The shared memory is also limited to 64KB for Fermi Architecture. The programmer 

does not need to be aware of the hardware used in order to get the program to run; but a good 

programmer needs to know the limitation of the hardware to write an optimal program. 
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Figure 11 Fermi GPU Floor Plan 

Physically, the GPU chip is organized into streaming multiprocessors (SM) and the SMs 

are surrounded by memory units. This is layout is consistent with the logical organization of the 

CUDA software; each grid contain multiple blocks where each block populate a Streaming 

Multiprocessor.  
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Figure 12 Fermi Streaming Multiprocessor 

Figure 12 illustrates streaming multiprocessor in a GPU chip. Each Streaming 

Multiprocessor contains 32 CUDA cores, 16 load/store unit, Special Function Units, and two 

warp schedulers. It is also worth noticing that each streaming multiprocessor contains 64KB of 

configurable memory; this can be used as shared memory, or L1 Cache. The warp schedulers 

select a core and schedule instructions to run in each core. This guarantees two instructions to be 

scheduled at any time. Inside each CUDA Core, dispatch unit receives instructions from warp 

scheduler, and operand collector receives operands from the register file. The Arithmetic Logic 

Unit or Floating Point Unit will then process the input data and write it to result queue.  
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matrix add code, the __global__ identifier tells compiler to compile this subroutine as GPU code. 

Notice threadIdx.x is not a defined keyword, but it is implicitly defined keyword in CUDA; this 

variable is the thread identifier, each thread in a block has a unique thread identifier. Once 

execution is completed, Section D copies the resulting matrix C back to host memory. Section E 

frees the reserved memory. The allocated memory remains in the GPU until cudaFree() is called.  

4.2 
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Figure 14 Data Structures of VANET simulator 

In Weigle and Arbabi’s simulator, mobility module is enhanced to simulate Vehicles, 

while the default networking stack is used. The highway mobility module is named 

highwayProject. The highwayProject instance contains a list of highway. Highway object defines 

highway length, direction, position, lane width, highway position, and list of vehicles. Vehicles 

and Highways are stored in a linked list. Each instance of highway contains a list of vehicles. The 

vehicle 
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Figure 15 VANET NS-3 subroutine calls 

The VANET simulator schedules a callback to calculate distance every nominal time 

deltaT. This value is set to 0.1 as default. This will schedule a callback to re-evaluate position 

after 0.1s simulation time. Updating speed and changing lane is done after 10 steps of position 

evaluation subroutine. This will avoid erratic driving behavior and lane changing. The 

networking stacks are simulated by NS-3 built-in libraries. Each vehicle is installed with an IEEE 

802.11p model. The networking module can be changed if user prefers to use otherwise. 
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Figure 16 Distance Computation 

To calculate the distance between each vehicle, the subroutine visits each vehicle in a 

linked list and calculates the distance based on Cartesian coordinates as displayed in figure 16. 

The computational complexity of this algorithm has big-O notation of O(n
2
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example, the distance between node A and node B can be retrieved in element 1,2 of the 

matrix.[28] 

 

Figure 18 Position and Movement Matrix 

Calculate Distance

Update Speed, 
Acceleration, and 

Lane Change

Begin Simulation

PHY Module

,  
Figure 19 Proposed NS-3 workflow 

The position matrix in figure 18, Pt stores coordinate for each node, and Mt stores the 

movement matrix for each step. Figure 19 represents a flowchart of the proposed design. During 

initialization, Pt and Mt are first copied to the GPU. On subsequent steps, the output matrix Dt is 



34 

 

copied to CPU for networking stack computation. In any iteration, Mt is added to Pt to change 

the coordinates, simulating the vehicular position change. Using equation 1.3, new movement 

matrix Mtô can be computed by substituting Mt into v. Because Mt is a matrix, the same 

operation is applied to the matrix, GPU can use all cores to apply the same operation across all 

elements. This workload is categorized as a SIMD instruction. 

__global__ void computeDistanceMatrix(Vector3D *a, Vector3D *b, double *c, 

int numberOfNodes){ 

 int i = blockIdx.x * blockDim.x + threadIdx.x; 

 int j = blockIdx.y * blockDim.y + threadIdx.y; 

 double dx = b[i].x - a[i].x; 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

Chapter 4 described the technique and implementation used to improve the network 

simulation speed. This chapter verifies correctness of the output, and discusses speed 

improvement of the VANET simulator. 

5.1 Assumption 

For verification, the model uses same random number generator, and we assume the same 
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Table 2: Hardware Setup 

 Supercomputer Workstation 

CPU
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Table 3: Node Position 

Node 
Number 

X position Y position 

Before After Before After 

Node 1 1 16 1 1 

Node 2 3 21 1 1 

Node 3 5 23 1 1 

Node4 
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We anticipate more time taken as the number of nodes increases. The workload ranged 

from 10000 nodes to 55000 nodes. The workload consists of calculating the position based on 

movement and distance. The workload has compute complexity of O(n
2
), a linear increase in 

number of nodes expected to increase time exponentially. Supercomputer is marginally faster 

than a workstation for this workload. Since nodes information is 
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use GPU for computation. In proposed solution, as workload increases, CPU becomes the 

bottleneck of the problems, and speed-up saturates. 

 
Figure 25 Comparison against iterations 

The first scenario in resulting figure 26 simulates 100 nodes and varies iteration, i.e. 

dt=0.1, t=10,20,..70. The proposed solution offloads SIMD operations while CPU consumes 

data from GPU. Traditional CPU-only implementation requires processor to compute both SIMD 

and MIMD operations. Supercomputer has faster processor, resulting marginally faster 

simulation for traditional simulator. For proposed solution, the resulting time taken is almost 

similar on both platforms.  
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Figure 27 Power Consumed in Isolated Workload 

Figure 27 presents the energy consumed by workstation in an isolated workload. Energy 

required to compute large workload in GPU are less than 1.15 kJ, due to the minimal time 

consumed by GPU to perform isolated calculation. 

 
Figure 28 Power Consumed in Isolated Workload 

In figure 28, power consumed by proposed solution initially uses 60x less energy to 

perform same simulation compared to traditional implementation. As workload increases, time 
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taken to compute increases and speed up saturates at 2000 nodes, where the GPU waits for CPU 

before an iteration can be completed. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPES 

 

 We hope the discussion presented in the thesis motivates the interested scholars into 

considering research in emerging technologies in Vehicular Area Networking and GPU 

Computing. Vehicular Area Networking poses challenging networking problems and solutions. 

On the other hand, the use of GPU in simulation gives advantages in throughput. 

 

6.1  Conclusion 

 By accelerating computation using GPU, we achieve speed up of 75x. We can further 

exploit this method to develop even faster simulation by integrating more models into NS-3 

simulator. CPU had long hit the performance wall, and GPU computation has been a trend to 

improve efficiency. 

NS-3 allows modules to be added or removed due to low-level design. By adding 

modules which offload task to GPU, simulation throughput can be improved. Many work has 

been done to make use of GPU, for example the GPU-based simulation models such as BRITE 

[27] on NS-3. As this trend follows, a higher throughput and more cost-efficient method can be 

utilized for simulation. By combining multiple GPU-based modules BRITE model [27] will 

inherently speed up simulation. 

New development of NS3 has been using distributed framework such as MPI [26] yields 
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