

CUDA ACCELERATED LARGE SCALE VEHICULAR AREA NETWORK SIMULATOR

A Thesis by

Chok Meng Yip

Bachelor of Engineering, Wichita State University, 2011

Submitted to the Department of Electrical Engineering and Computer Science

and the faculty of the Graduate School of

Wichita State University

in partial fulfillment of

the requirements for the degree of

Master of Science

August 2014

ii

© Copyright 2014 by Chok Meng Yip

All Rights Reserved

iii

CUDA ACCELERATED LARGE SCALE VEHICULAR AREA NETWORK SIMULATOR

The following faculty members have examined the final copy of this thesis for form and content,

and recommend that it be accepted in partial fulfillment of the requirement for the degree of

Master of Science, with a major in Computer Networking.

iv

DEDICATION

To the Almighty, my loving wife, parents, in-laws, brother, and cousins for their ultimate

encouragement throughout my education and for incomparable advice throughout my life

v

ACKNOWLEDGMENTS

 I am very thankful to my thesis advisor Dr. Abu Asaduzzaman for his continuous

encouragement and support throughout my research work. His timely supervision of my work

and guidance allowed this research work to be completed on time. He always had time and

patience to guide me in accomplishing this work in spite of his busy schedule and offered me

assistance from time to time. It has been an honor to work for him as a graduate research

assistant.

 I express my gratitude towards Dr. Ramazan Asmatulu and Dr. Yi Song for their valuable

encouragement and I would also like to thank them for taking time from their busy schedule and

to be the part of my committee member.

 I take pleasure in recognizing, the efforts of all those who encouraged and assisted me

both directly and indirectly with my experimental research. I specially want to thank lab

colleagues Mark Allen and Kishore Chidella for precious input and continuous motivation and

support. Finally, I acknowledge the WSU CAPPLab research group and facilities for providing

me with all the necessary resources to prepare my research work.

viii

TABLE OF CONTENTS (continued)

Chapter Page

6. CONCLUSION AND FUTURE EXTENSIONS……………….…………….

 6.1 Conclusion……………………………………………………………

 6.2 Future Extensions……………………………………………………..

REFERENCES………………………………………………………………….

ix

LIST OF TABLES

Table Page

1. FCC Allocation of VANET Networks...

2. Hardware Setup..

3. Node Position………………….

xii

LIST OF ABBREVIATIONS

VANET Vehicular Area Network

MAC Medium Access Control

OSI Open Systems Interconnection

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

DSSS Direct Sequence Spread Spectrum

OFDM Orthogonal Frequency Division Multiplexing

RTS Ready To Send

CTS Continue To Send

WAVE Wireless Access for Vehicular Environment

DSRC Dynamic Short Range Communication

SCH Service Channel

CCH Control Channel

BER Bit Error Rate

V2V Vehicular to Vehicular Network

V2I Vehicular to Infrastructure

V2X Vehicular to Other Units

SUMO Simulation of Urban Mobility

IDM Intelligent Driving Model

MOBIL Minimal Overall Braking decelerations Induced by Lane Changes

CUDA Compute Unified Device Architecture

xiii

IDE Integrated Development Environment

GUI Graphical User Interface

GPU Graphics Processing Unit

GPGPU General Purpose GPU

SM Streaming Multiprocessors

2

ad-hoc networks standards does not adapt to these conditions. The rest of subsections discuss

about each layer and solution that will be implemented in standards

1.1.1 IEEE 802.11 Wireless Communication

 The IEEE 802.11 standard defines Medium Access Control (MAC) and physical layer

(PHY) of the open systems interconnection (OSI) model to ensure compatibility across all

4

1.1.2 Medium Access Control

For a shared wireless medium, transmission nodes are required to contend for the

channel. Signal collision happens when two nodes transmit using the same channel, resulting in

interference and hence packet lost. To overcome such inefficiency, ad-hoc nodes uses distributed

coordinated function (DCF) to contend for signal transmission. This function optimizes for fair

usage of wireless medium even in a high utilization rate. [3] One common problem in this

mechanism is the hidden node problem.

A BC

Figure 1: Hidden Node Problem

The hidden node can be illustrated using Figure 1. In this situation, Node A and Node B

does not interfere. When node B transmit to node C, node A will not sense the medium being

busy, and cause interference, resulting a failed packet transmission in Node C.

5

Figure 2 RTS-CTS illustration

To overcome such problem, IEEE 802.11 uses RTS-CTS mechanism. Before a packet is

transmitted, ready-to-send (RTS) packet control packet is transmitted to receiver. Receiver will

acknowledge RTS request by replying continue-to-send (CTS) packet. The hidden node-A which

receives CTS will enter silent period to avoid channel conflict.

Signal collision between nodes in the same channel can be simulated accurately. By simulating

signal collision behavior, network engineer can place nodes strategically to optimize a network.

N

o

d

e

C

N

o

d

e

B

N

o

d

e

A

T
im

e

6

1.2 IEEE 802.11p

 The IEEE 802.11p is an extension of existing IEEE 802.11 standard. The Wireless

Access for Vehicular Environment (WAVE) and DSRC (Dedicated Short Range

Communications) is established in European Countries and United States as a standard for

vehicular network. This Federal Communications Commission standard allocated 75MHz

spectrum at 5.9GHz bandwidth for vehicular communication [4].

Table 1-FCC Allocation of VANET networks

Frequency

(Ghz)

5.850 5.860 5.870 5.880 5.890 5.900 5.910 5.920

Channel

Number

 172 174 176

7

contention window such that transmit opportunity of one channel does not affect the other

channels [5].

The Physical layer of 802.11p uses Orthogonal Frequency Division Multiplexing

(OFDM) to make use different channels. IEEE 802.11p states optional enhanced receiver

performance requirements; this allows each channel to be encoded in different rate, resulting in

different Bit Error Rate (BER). By introducing sub-carrier encoding, each channel is customized

to trade-off between transmit range and bandwidth.

1.3 Mobility Modelling

 This section discusses simulated behavior beyond the context of networking. These

behaviors are necessary model vehicular movement and road traffic scenarios.

1.3.1 Vehicular Area Network

The main task of Vehicular ad-hoc networking is distributing data to other nodes. The

distribution is split into three categories. Vehicle to Vehicle transfer (V2V) is concerned in

transferring data from vehicle nodes to vehicle nodes. Vehicle to Infrastructure (V2I) focuses on

transferring data between vehicular nodes and infrastructure such as internet backhaul or access

points. Vehicle to Other Units (V2X) looks at interaction between Vehicular Nodes and other

nodes that is not infrastructure or vehicular, such as the road side units.

The data distribution behavior can be modelled by epidemiological model and isolated

epidemiological model propose

8

simulator. By using real-world maps, the simulated positions and routes are closely related to

real-world scenarios.

1.3.2 Driving Behavior

The mobility models in NS-3 consist of position and routes. The traffic routes are derived

using real-world scenarios. Each vehicle in map holds the value of position, velocity, and is

considered as a network node. NS-3 simulator uses Treiber’s Intelligent Driving Model (IDM)

to calculate the change in velocity and position [8]. The driving behavior also incorporates lane

changing behavior; the model named “Minimizing Overall Braking decelerations Induced by

Lane changes (MOBIL)” is introduced for realistic lane changing behavior [9]. These models

have been verified against realistic data derived from experiments [10].

(1.3)

where

(1.4)

The IDM model in equation 1.3 and 1.4 defines change in velocity as a function of

acceleration and current velocity. On a free-road, change in velocity dv, depends on acceleration

and deceleration a, comfortable braking value b, current velocity v, desired velocity v0 and

desired distance of the vehicle in front s* and actual distance of the vehicle in front s.

 (1.5)

10

Vehicles travelling at high speed have very little response time to respond to accidents

ahead. Furthermore, drivers do not usually see beyond vehicle in front. The safety application

can communicate over a distance, preventing the pile-up accidents from happening. The early

warnings give drivers more response time, or even automate the vehicle to stop.

Driving through uncontrolled intersections poses as a challenge for drivers, given limited

viewing range, and the need for drivers to look into many directions (e.g., intersections without a

traffic light). In VANET, safety application detects and warns drivers of an oncoming vehicle to

prevent accident, and vehicles can coordinate in an intersection to prevent collision.

Road congestion can be reduced using VANET. This is done by properly planning the

route to destination. Since vehicles are connected, congested road is avoided. It also indirectly

reduces traffic accidents [11] because drivers would be less frustrated and more inclined to

follow traffic regulations.

User applications in VANET use the Service Channel (SCH) and provide drivers and

passengers with network capabilities. This may include internet service on the road, or other

network services like commercial advertisements or location directory. VANET appears to be

invisible layer, and thus existing applications can be applied to VANET.

The NS-3 simulator is built on top of these rules and behaviors. They are sufficient to

simulate real-world conditions and generate data outputs by applying basic networking theories,

and applying VANET standard above it. We then model the driving behavior and realistic maps

to generate realistic data.

11

1.5 Thesis Organization

In chapter 2, this chapter discusses current state of the simulation technology, and the proposed

solution of this thesis.

Chapter 3 explains about the current simulators that exist and the study of some applications that

are commonly used.

12

CHAPTER 2

PROBLEM DESCRIPTION AND CONTRIBUTIONS

The current VANET Simulator uses NS-3 to simulate networking and driving models.

Simulation is the first step of designing networks; network designers optimize Quality of Service

by tweaking parameters. Cristea et al [12] states the usefulness of large scale VANET simulators.

Contemporary large scale VANET simulation is proved to be time consuming and often energy

consuming.

Some solution such as Mobile wireless Vehicular Environment Simulator (MoVES) uses

distributed computing to simulate large scale networks [13]. These simulators achieve higher

computation throughput by distributing workload across computers, but power and hardware

costs for such solutions are expensive [14]. There is also solution proposed by Moritz et al that

use mathematical model to optimize simulation by reducing computation workload thus trading

off output accuracy [15]. The computation resources play an important role in computation

performance.

The solution of this thesis concentrates on how to design energy efficient high performance

vehicular area network simulator for large scale networks. In this thesis work we have proposed

using General Purpose Graphics Processing Unit (GPGPU) to assist VANET simulation to

improve computation performance. This solution is known for large scale and efficient

simulation. Many simulators adapted to such solution yield promising speed up[16]. In this thesis

work, a Compute Unified Device Architecture (CUDA) is used to offload expensive

computations from NS-3 simulator to improve simulation throughput.

14

CHAPTER 3

LITERATURE SURVEY

This chapter provides a detailed overview of the two main aspects of this dissertation, the

NS-3 network simulator and VANET extension of NS-3. Hadi Arbabi and Michele C. Weigle

[17] extended NS-3 to simulate VANET based on models described in Chapter 1.

3.1

15

 The iTETRIS platform is a project funded by European Commission, and mainly used by

and developed by European nations. This platform serves as a connector for NS-3 simulator and

Simulation of Urban Mobility (SUMO) simulator to simulate Intelligent Transportation System

(ITS). The platform is being commercially used but developed as open source software. It is

distributed by invitation or request only. It features three realms simulation, including traffic

management, network communications, and ITS facilities support.

 The NS-3 simulator is open source software and fully developed by academia for

academia purposes. Software can be modified for specific uses, and due to the large user base, it

has large community support. NS-3 does not require a GUI to use, but extensions of GUI are

being developed to review simulation results. NS-3 is not compatible with NS-2, it has been

written from scratch based on python and C++ programming language. In a recent study [23], the

NS-3 simulator yields better performance than OMNET++ simulator. NCTuns is commercial

licensed, and researchers no longer have access to the source code. NS-3 is the suitable target

because it uses the similar programming language as CUDA. It is also open source; users are free

to modify the source code to their needs. NS-3 also inherits the best simulation speed.

3.1 The NS-3 Simulator

NS-3 simulator is a discrete event simulator. Model behavior is simulated by generating

events which represent an event happened in reality. For example, when a node sends a packet,

Application layer will first generate an event, which will be processed by the Network Layer.

Network layer will then generate events to the MAC Layer, and the events cascade until the

packet reaches its destination.

16

 1 #include "ns3/core-module.h"
 2 #include "ns3/network-module.h"

 3 #include "ns3/internet-module.h"

 4 #include "ns3/point-to-point-module.h"

 5 #include "ns3/applications-module.h"

 6

 7 using namespace ns3;

 8

 9 NS_LOG_COMPONENT_DEFINE ("FirstScriptExample");

 10

 11 int

 12 main (int argc, char *argv[])

 13 {

 14

http://www.nsnam.org/doxygen/group__logging.html#ga225a95395fa117b7309aa3c43518d02e
http://www.nsnam.org/doxygen/first_8cc.html#a0ddf1224851353fc92bfbff6f499fa97
http://www.nsnam.org/doxygen/first_8cc.html#a0ddf1224851353fc92bfbff6f499fa97
http://www.nsnam.org/doxygen/classns3_1_1_time.html#ac89165ba7715b66017a49c718f4aef09
http://www.nsnam.org/doxygen/classns3_1_1_time.html#a87a7f4d29c68b047a72d291ad660295aae324232af1b8cf625cecd92a22e0f2dc
http://www.nsnam.org/doxygen/group__logging.html#gadc4ef4f00bb2f5f4edae67fc3bc27f20
http://www.nsnam.org/doxygen/group__logging.html#ggaa6464a4d69551a9cc968e17a65f39bdbae36aedc880de94fd5a5b53bb9fe65628

18

 Events are logged in the output of the simulation. Logs are important for precise output.

To find out exact propagation delay in example in figure 4, we need a more detailed output.

More packets can be logged by changing line 15 and 16 replacing LOG_LEVEL_INFO to

LOG_LEVEL_ALL.

1
2
3
4
5
6
7
8
9

10

11
12

13
14

15
16
17
18
19
20

0s UdpEchoServerApplication:UdpEchoServer(0x165023c0)
0s UdpEchoClientApplication:UdpEchoClient(0x16502890)
0s UdpEchoClientApplication:SetDataSize(0x16502890, 1024)
1s UdpEchoServerApplication:StartApplication(0x165023c0)
2s UdpEchoClientApplication:StartApplication(0x16502890)
2s UdpEchoClientApplication:ScheduleTransmit(0x16502890, +0.0ns)
2s UdpEchoClientApplication:Send(0x16502890)
2s UdpEchoClientApplication:Send(): At time 2s client sent 1024 bytes to 10.1.1.2 port 9
2.00369s UdpEchoServerApplication:HandleRead(0x165023c0, 0x165029d0)
2.00369s UdpEchoServerApplication:HandleRead(): At time 2.00369s server received 1024 bytes
from 10.1.1.1 port 49153
2.00369s UdpEchoServerApplication:HandleRead(): Echoing packet
2.00369s UdpEchoServerApplication:HandleRead(): At time 2.00369s server sent 1024 bytes to
10.1.1.1 port 49153

19

Figure 6 NS-3 architecture

Modules in NS

20

 The modules work together by calling back module functions by the core scheduler.

Callback works by first storing function pointer to scheduler. Figure 7 presents an example use

of callback mechanism commonly used by NS-3 simulator; this is the actual source code

excerpt of node.cc. In line 155 and 156, simulator scheduled an event to be called, and the

22

In figure 8, the simulator uses a linked list to store vehicles and uses maps to store highway

paths. Highway paths are defined in XML file, for each simulation step, vehicles positions are re-

evaluated based on the driving models.

Figure 9 Visualized vehicular trace file

3.4 Large Scale NS-3 Simulation

Large scale network simulations are fundamental part of active networking research. NS-

3 supports distributed simulation. This effectively parallelizes process across a network using

multiple computers. Pelkey and Riley [26] recent study yield 2.4 times speed up using distributed

simulation. The author experimented with node size up to 5000 nodes. The authors also pointed

out that synchronization is the big factor to consider when running a simulation for speed up.

CUDA architecture accelerates processes by applyifo8dning a simulation fo4gr(il)-

23

first use of CUDA in NS-3 simulator to simulate large scale nodes. The author translated Floyd-

Warshall algorithm to Graph-Matrix format to effectively use GPGPU resources. The author also

claims the speed up of 3.5 over simulation of 5000 nodes connected in BRITE topology. The

simulation showed promising results, using significantly less resources and yield higher speed up

than MPI implementation.

These two outcomes suggest that large number of nodes needs to be parallelized in order

to create a scalable simulation. Swenson et al stated the impact of parallelization; in one

experiment, a single run took 30 minutes to run. VANET simulation can yield the same speed up

using this approach. MPI and CUDA implementation can be combined to yield even better speed

up, and would take a lot of effort to develop such solution.

This chapter concludes that NS-3 is the proper platform for this thesis work. The NS-3

simulator yields better performance and is natively supported by CUDA. NS-3 simulator is

simple to use, and its architecture allows developers to easily extend the NS-3 simulator

functionality. Furthermore, the NS-3 VANET simulation model is developed and verified against

other simulators. Finally, large scale network simulation is commonly used and scalable

solutions are being researched.

24

CHAPTER 4

PROPOSED SOLUTION

The main objective of the proposed solution is to improve speed up using CUDA

architecture. Previous chapter, we discussed some knowledge of NS-3 VANET implementation

allowing us to arrive at this solution. We also briefly discussed about parallelization and methods

of implementation. This chapter propose a solution by focusing on parallelization using CUDA

and how to integrating the solution into NS-3.

4.1 CUDA

CUDA is a general purpose parallel computing platform and programming language to

optimally use NVIDIA Graphics Processing Unit (GPU)[28]. CUDA is perceived as a co-

processor to offload programmer’s workload into GPU hardware. GPU has the advantage of

handling many threads in parallel using the same instruction. A CUDA program which runs on

GPU hardware is called a kernel. When kernel is called, CPU can either wait for GPU to

complete its computation, or it may continue processing other tasks until kernel execution is

complete.

25

Grid 1
CUDA Block 1

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Thread
8

Thread
9

Thread
10

Thread
11

Thread
12

Thread
13

Thread
14

Thread
15

Thread
16

Thread
17

Thread
18

Thread
19

Thread
20

Thread
21

Thread
22

Thread
23

Thread
24

Thread
25

Thread
26

Thread
27

Thread
28

Thread
29

Thread
30

Thread
31

Thread
32

Shared Memory

CUDA Block X

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Thread
8

Thread
9

Thread
10

Thread
11

Thread
12

Thread
13

Thread
14

Thread
15

Thread
16

Thread
17

Thread
18

Thread
19

Thread
20

Thread
21

Thread
22

Thread
23

Thread
24

Thread
25

Thread
26

Thread
27

Thread
28

Thread
29

Thread
30

Thread
31

Thread
32

Shared Memory

Figure 10 CUDA Logical Organization

CUDA code execution hierarchy is based on Grid, Block, and Threads. Figure 10 is used

to visualize the grid, block and thread organization of CUDA architecture. Grid is a group of

Blocks; and Blocks are a group of Threads. Each block is guaranteed to execute in parallel in

CUDA. Each thread in the same block shares the same Shared Memory and executes the same

instruction. The Shared memory is the fastest memory built in GPU Streaming Multiprocessors.

Due to the fact that each block of threads are guaranteed to execute in parallel, number of threads

in a block is limited to 32 in each dimension, or 1024 maximum number of threads per

block[29]. The shared memory is also limited to 64KB for Fermi Architecture. The programmer

does not need to be aware of the hardware used in order to get the program to run; but a good

programmer needs to know the limitation of the hardware to write an optimal program.

26

Fermi GF110 Chip

Streaming Multiprocessor (Physical)

D
RA

M
H

os
t

In
te

rf
ac

e
G

ig
aT

hr
ea

d

L2 Cache

SM
1

SM
2

SM
3

SM
4

SM
5

SM
6

SM
7

SM
8

SM
9

SM
10

SM
11

SM
12

SM
13

SM
14

SM
15

SM
16

D
RA

M

D
RA

M
D

RA
M

D
RA

M
D

RA
M

Figure 11 Fermi GPU Floor Plan

Physically, the GPU chip is organized into streaming multiprocessors (SM) and the SMs

are surrounded by memory units. This is layout is consistent with the logical organization of the

CUDA software; each grid contain multiple blocks where each block populate a Streaming

Multiprocessor.

27

Figure 12 Fermi Streaming Multiprocessor

Figure 12 illustrates streaming multiprocessor in a GPU chip. Each Streaming

Multiprocessor contains 32 CUDA cores, 16 load/store unit, Special Function Units, and two

warp schedulers. It is also worth noticing that each streaming multiprocessor contains 64KB of

configurable memory; this can be used as shared memory, or L1 Cache. The warp schedulers

select a core and schedule instructions to run in each core. This guarantees two instructions to be

scheduled at any time. Inside each CUDA Core, dispatch unit receives instructions from warp

scheduler, and operand collector receives operands from the register file. The Arithmetic Logic

Unit or Floating Point Unit will then process the input data and write it to result queue.

29

matrix add code, the __global__ identifier tells compiler to compile this subroutine as GPU code.

Notice threadIdx.x is not a defined keyword, but it is implicitly defined keyword in CUDA; this

variable is the thread identifier, each thread in a block has a unique thread identifier. Once

execution is completed, Section D copies the resulting matrix C back to host memory. Section E

frees the reserved memory. The allocated memory remains in the GPU until cudaFree() is called.

4.2

30

Figure 14 Data Structures of VANET simulator

In Weigle and Arbabi’s simulator, mobility module is enhanced to simulate Vehicles,

while the default networking stack is used. The highway mobility module is named

highwayProject. The highwayProject instance contains a list of highway. Highway object defines

highway length, direction, position, lane width, highway position, and list of vehicles. Vehicles

and Highways are stored in a linked list. Each instance of highway contains a list of vehicles. The

vehicle

31

Calculate Distance

Update Speed,
Acceleration, and

Lane Change

Begin Simulation

PHY Module

Initialize Highway
Generate Vehicles

MAC Module

Schedule Callback
At DeltaT

Etc.

Figure 15 VANET NS-3 subroutine calls

The VANET simulator schedules a callback to calculate distance every nominal time

deltaT. This value is set to 0.1 as default. This will schedule a callback to re-evaluate position

after 0.1s simulation time. Updating speed and changing lane is done after 10 steps of position

evaluation subroutine. This will avoid erratic driving behavior and lane changing. The

networking stacks are simulated by NS-3 built-in libraries. Each vehicle is installed with an IEEE

802.11p model. The networking module can be changed if user prefers to use otherwise.

32

Figure 16 Distance Computation

To calculate the distance between each vehicle, the subroutine visits each vehicle in a

linked list and calculates the distance based on Cartesian coordinates as displayed in figure 16.

The computational complexity of this algorithm has big-O notation of O(n
2

33

example, the distance between node A and node B can be retrieved in element 1,2 of the

matrix.[28]

Figure 18 Position and Movement Matrix

Calculate Distance

Update Speed,
Acceleration, and

Lane Change

Begin Simulation

PHY Module

,
Figure 19 Proposed NS-3 workflow

The position matrix in figure 18, Pt stores coordinate for each node, and Mt stores the

movement matrix for each step. Figure 19 represents a flowchart of the proposed design. During

initialization, Pt and Mt are first copied to the GPU. On subsequent steps, the output matrix Dt is

34

copied to CPU for networking stack computation. In any iteration, Mt is added to Pt to change

the coordinates, simulating the vehicular position change. Using equation 1.3, new movement

matrix Mtô can be computed by substituting Mt into v. Because Mt is a matrix, the same

operation is applied to the matrix, GPU can use all cores to apply the same operation across all

elements. This workload is categorized as a SIMD instruction.

__global__ void computeDistanceMatrix(Vector3D *a, Vector3D *b, double *c,

int numberOfNodes){

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 int j = blockIdx.y * blockDim.y + threadIdx.y;

 double dx = b[i].x - a[i].x;

35

CHAPTER 5

RESULTS AND DISCUSSIONS

Chapter 4 described the technique and implementation used to improve the network

simulation speed. This chapter verifies correctness of the output, and discusses speed

improvement of the VANET simulator.

5.1 Assumption

For verification, the model uses same random number generator, and we assume the same

36

Table 2: Hardware Setup

 Supercomputer Workstation

CPU

38

Table 3: Node Position

Node
Number

X position Y position

Before After Before After

Node 1 1 16 1 1

Node 2 3 21 1 1

Node 3 5 23 1 1

Node4

39

We anticipate more time taken as the number of nodes increases. The workload ranged

from 10000 nodes to 55000 nodes. The workload consists of calculating the position based on

movement and distance. The workload has compute complexity of O(n
2
), a linear increase in

number of nodes expected to increase time exponentially. Supercomputer is marginally faster

than a workstation for this workload. Since nodes information is

40

use GPU for computation. In proposed solution, as workload increases, CPU becomes the

bottleneck of the problems, and speed-up saturates.

Figure 25 Comparison against iterations

The first scenario in resulting figure 26 simulates 100 nodes and varies iteration, i.e.

dt=0.1, t=10,20,..70. The proposed solution offloads SIMD operations while CPU consumes

data from GPU. Traditional CPU-only implementation requires processor to compute both SIMD

and MIMD operations. Supercomputer has faster processor, resulting marginally faster

simulation for traditional simulator. For proposed solution, the resulting time taken is almost

similar on both platforms.

42

Figure 27 Power Consumed in Isolated Workload

Figure 27 presents the energy consumed by workstation in an isolated workload. Energy

required to compute large workload in GPU are less than 1.15 kJ, due to the minimal time

consumed by GPU to perform isolated calculation.

Figure 28 Power Consumed in Isolated Workload

In figure 28, power consumed by proposed solution initially uses 60x less energy to

perform same simulation compared to traditional implementation. As workload increases, time

43

taken to compute increases and speed up saturates at 2000 nodes, where the GPU waits for CPU

before an iteration can be completed.

44

CHAPTER 6

CONCLUSION AND FUTURE SCOPES

 We hope the discussion presented in the thesis motivates the interested scholars into

considering research in emerging technologies in Vehicular Area Networking and GPU

Computing. Vehicular Area Networking poses challenging networking problems and solutions.

On the other hand, the use of GPU in simulation gives advantages in throughput.

6.1 Conclusion

 By accelerating computation using GPU, we achieve speed up of 75x. We can further

exploit this method to develop even faster simulation by integrating more models into NS-3

simulator. CPU had long hit the performance wall, and GPU computation has been a trend to

improve efficiency.

NS-3 allows modules to be added or removed due to low-level design. By adding

modules which offload task to GPU, simulation throughput can be improved. Many work has

been done to make use of GPU, for example the GPU-based simulation models such as BRITE

[27] on NS-3. As this trend follows, a higher throughput and more cost-efficient method can be

utilized for simulation. By combining multiple GPU-based modules BRITE model [27] will

inherently speed up simulation.

New development of NS3 has been using distributed framework such as MPI [26] yields

eve

46

REFERENCES

48

[12] Cristea, Valentin, Victor Gradinescu, Cristian Gorgorin, Raluca Diaconescu, and Liviu

Iftode. "Simulation of vanet applications." Automotive Informatics and Communicative

Systems (2009).

[13] Bononi, Luciano, Marco Di Felice, Marco Bertini, and Emidio Croci. "Parallel and

distributed simulation of wireless vehicular ad hoc networks." InProceedings of the 9th

ACM international symposium on Modeling analysis and simulation of wireless and

mobile systems, pp. 28-35. ACM, 2006

[14] Zhai, Yan, Mingliang Liu, Jidong Zhai, Xiaosong Ma, and Wenguang Chen. "Cloud

versus in-house cluster: evaluating amazon cluster compute instances for running mpi

applications." In State of the Practice Reports, p. 11. ACM, 2011.

[15] Killat, Moritz, Felix Schmidt-Eisenlohr, Hannes Hartenstein, Christian Rössel, Peter

Vortisch, Silja Assenmacher, and Fritz Busch. "Enabling efficient and accurate large-scale

simulations of VANETs for vehicular traffic management." In Proceedings of the fourth

ACM international workshop on Vehicular ad hoc networks, pp. 29-38. ACM, 2007.

[16] Asmatulu, R., Asaduzzaman, A.; Yip, C.M.; Kumar, S.S.A.;, "An effective CUDA based

simulation for lightning strike protection on nanocomposite materials," Southeastcon,

2013 Proceedings of IEEE , pages.1-5, 2013. doi: 10.1109/SECON.2013.6567368

[17] Arbabi, Hadi, and Michele C. Weigle. "Highway mobility and vehicular ad-hoc networks

in ns-3." In Proceedings of the Winter Simulation Conference, pp. 2991-3003. Winter

Simulation Conference, 2010.

[18] Varga, András. "The OMNeT++ discrete event simulation system." InProceedings of the

European Simulation Multiconference (ESM’2001), vol. 9, p. 185. sn, 2001.

[19] Wang, S. Y., and C. L. Chou. "NCTUns tool for wireless vehicular communication

network researches." Simulation Modelli

49

[23] Weingartner, Elias, Hendrik Vom Lehn, and Klaus Wehrle. "A performance comparison

of recent network simulators." In Communications, 2009. ICC'09. IEEE International

Conference on, pp. 1-5. IEEE, 2009.

[24] Henderson, Thomas R., Mathieu Lacage, George F. Riley, C. Dowell, and J. B. Kopena.

"Network simulations with the ns-3 simulator." SIGCOMM demonstration (2008).

[25] Riley, George F., and Thomas R. Henderson. "The ns-3 network simulator." InModeling

and Tools for Network Simulation, pp. 15-34. Springer Berlin Heidelberg, 2010.

[26] Pelkey, Joshua, and George Riley. "Distributed simulation with MPI in ns-3."

InProceedings of the 4th International ICST Conference on Simulation Tools and

Techniques, pp. 410-414. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), 2011.

[27] Swenson, Brian Paul, and George F. Riley. "Simulating large topologies in ns-3 using

BRITE and CUDA driven global routing." In Proceedings of the 6th International ICST

Conference on Simulation Tools and Techniques, pp. 159-166. ICST (Institute for

Computer Sciences, Social-Informatics and Te BDC BT
1 04i2(o7-5 69>>aCenc)6(e)4(s, S)-4(oc)4(ihP <</MCID 43>> BDC BTI)13 <</MCID TJ4511/MCID 69>> BDC BT320.69 478.63 Tm
0 g
0 G
[71

